LINEAR ALGEBRA HOMEWORK

JULY 27, 2023

Let F be a field and V a subspace of F^k for some $k \in \mathbb{N}$. Let A be an $m \times n$ matrix for some $m, n \in \mathbb{N}$ and b a vector in F^n . Denote by $V_b = \operatorname{Sol}(Ax = b)$ and $V_0 = \operatorname{Sol}(Ax = 0)$.

Exercise 1. Show that:

- (1) If $v_1, v_2 \in V$ are independent and $Fv_1 + Fv_2 \subsetneqq V$, then one can find $v_3 \in V \setminus (Fv_1 + Fv_2)$ such that v_1, v_2, v_3 are independent.
- (2) More generally, if $v_1, \ldots, v_{r-1} \in V$ are independent and $Fv_1 + \cdots + Fv_{r-1} \subsetneq V$, then one can find $v_r \in V \setminus (Fv_1 + \cdots + Fv_{r-1})$ such that v_1, \ldots, v_r are independent.

Exercise 2. Let $P \in V_b$. Show that $V_b = V_0 + P$.

Exercise 3. Define the sum on V_b as $\oplus : V_b \times V_b \longrightarrow V_b$ $(y, y') \longmapsto y \oplus y' := y + y' - P.$

Please **give** an appropriate definition on scalar-multiplication \otimes and **show** that $(V_b, \oplus, \otimes, P)$ satisfies the algebra laws V1-V8.