LINEAR ALGEBRA HOMEWORK

Let F be a field and V a subspace of F^{k} for some $k \in \mathbb{N}$. Let A be an $m \times n$ matrix for some $m, n \in \mathbb{N}$ and b a vector in F^{n}. Denote by $V_{b}=\operatorname{Sol}(A x=b)$ and $V_{0}=\operatorname{Sol}(A x=0)$.

Exercise 1. Show that:

(1) If $v_{1}, v_{2} \in V$ are independent and $F v_{1}+F v_{2} \varsubsetneqq V$, then one can find $v_{3} \in V \backslash\left(F v_{1}+F v_{2}\right)$ such that v_{1}, v_{2}, v_{3} are independent.
(2) More generally, if $v_{1}, \ldots, v_{r-1} \in V$ are independent and $F v_{1}+$ $\cdots+F v_{r-1} \subsetneq V$, then one can find $v_{r} \in V \backslash\left(F v_{1}+\cdots+F v_{r-1}\right)$ such that v_{1}, \ldots, v_{r} are independent.

Exercise 2. Let $P \in V_{b}$. Show that $V_{b}=V_{0}+P$.

Exercise 3. Define the sum on V_{b} as

$$
\begin{aligned}
\oplus: V_{b} \times V_{b} & \longrightarrow V_{b} \\
\left(y, y^{\prime}\right) & \longmapsto y \oplus y^{\prime}:=y+y^{\prime}-P .
\end{aligned}
$$

Please give an appropriate definition on scalar-multiplication \otimes and show that $\left(V_{b}, \oplus, \otimes, P\right)$ satisfies the algebra laws V1-V8.

